Да есть,т.к EGFH параллелограмм=>GF=EH и EG=FH,а т.к Р середина GH и EF=>
треугольник GPF= треугольнику EPH ,и треугольник EGP= треугольнику FPH
Замерить линейкой и посчитать по масштабу.
например м 1:10000 - в 1см. 100м.
Внешний угол треугольника равен сумме двух внутренних углов не смежных с ним, поэтому
А+В+Вн=26
А+В=Вн;
2 Вн=26;
Вн=26:2=13;
!80-13=167 это и будет третий угол
Площадь параллелограмма равна произведению стороны и высоты, опущенной на эту сторону: S = a · h.
У параллелограмма всего 4 высоты, которые попарно равны, поэтому нужно найти всего две разные высоты, опущенные на смежные стороны.
Пусть ABCD - параллелограмм, у которого AB = CD = 2 см, BC = AD = 5 см. Из точки B опустим высоту BM на сторону AD и высоту BN на сторону CD.
Найдём высоты:
S = AD · h1; 5 = 5 · h1; h1 = 5 / 5 = 1 (см) (другая высота, опущенная из точки D и параллельная этой, будет ей равна)
S = CD · h2; 5 = 2 · h2; h2 = 5 / 2 = 2,5 (см) (другая высота, опущенная из точки D и параллельная этой, будет ей равна)
Найдём острый угол BAD параллелограмма. Он будет равен острому углу BCD. Поэтому достаточно найти только один угол. Рассмотрим ΔBAM. Он прямоугольный. Теперь ищем угол BAM: sin BAM = BM / AB, где BM - это высота h1 = 1 см; sin BAM = 1/2; угол BAM = arcsin(1/2) = 30 (градусов) = угол BAD параллелограмма = угол BCD.