Пусть АВСD - данная прямоугольная трапеция, АВ||CD; AD=8 см, S(ABCD)=120 кв.cм, CD=AB+6
Проведем высоту ВК=AD=8 см, тогда ABKD - прямоугольник, ВКС - прямоугольный треугольник с прямым углом К
AB=DK;
Площадь трапеции равна половине произведения суммы ее оснований на высоту:
S(ABCD)=(AB+CD)*AD:2;
(AB+AB+6)*8:2=120;
(2AB+6)*4=120;
2AB+6=120:4;
2AB+6=30; /:2
AB+3=15;
AB=15-3;
AB=12;
CD=AB+6=12+6=18;
DK=CD-DK=18-12=6;
по теореме Пифагора
ответ: 12 см,10 см, 18 см, 8 см - стороны трапеции
Площадь сектора вычисляем по формуле s=pi * r²*α/360 =
=pi*2²*36/360=0,4 pi см²≈1,256 см².
Объём шарового сегмента рассчитывается по формуле: Vсегм=πh²(R-(h/3)), где h - высота сегмента.
Высота сегмента - треть диаметра шара: h=D/3=2R/3=6 см.
Vсегм=6²π(9-2)=252π≈791.7 см³.
Объём шарового слоя равен объёму шара за вычетом объёмов двух крайних сегментов, которые равны.
Vсл=Vш-2Vсегм
Vш=4πR³/3=972π см³
Vсл=972п-2·252π=468π≈1470.3 см³
В равнобедренном треугольнике биссектриса это и медиана и высота
Решение: <u>Напишу с начало какие я здесь факты буду использовать теореме Чевы, и Ван-Обеля можете посмотреть в интернете. (просто писать здесь надо много)
</u>Пусть B1, будет пересечением ВК с АС, тогда по теореме Чевы =>
(BA1*B1C*AC1)/(A1C*B1A*C1B)=1
это просто условие того что они будут пересекаться в одной точке.
<u />У нас BA1=1, A1C=3, C1B=1/2, AC1=1/2
1*B1C*1/2 / 3*B1A*1/2 = 1
<u />B1C/2 / 3B1A/2 = 1
B1C/B1A=3<u>
</u>
<u><em /></u><em />По теореме Ван Обеля
AK/KA1 = AC1/C1B + AB1/B1C = 1+ 1/3 = 4/3