<em>по свойству отрезков касательных, проведенных к одной окружности из одной точки, они равны. Поэтому боковые стороны 5х, а основание 2х+2х=4х, где х- коэффициент пропорциональности, тогда 5х=15. откуда х=15/5</em>
<em>х=3</em>
<em>тогда основание равно 4*5=</em><em>20/см/</em>
Не помню по какой теореме, если треугольник равнобедренный то его высота является также и мидеаной. Тока наоборот развернуть всё это осталось.
Две точки А и А' плоскости называются симметричными относительно прямой
с, если эта прямая проходит через середину отрезка АА' и перпендикулярна
к нему. Каждая точка прямой c считается симметричной самой себе.
Соответствие,
при котором каждой точке А сопоставляется симметричная ей относительно
прямой с точка А', называется осевой симметрией. Прямая с называется
осью симметрии.
Две фигуры F и F' называются симметричными
относительно оси с, если каждой точке одной фигуры соответствует
симметричная точка другой фигуры.
Фигура F называется симметричной относительно оси с, если она симметрична сама себе.
Примем без доказательства, что при симметрии прямые переходят в прямые, причем сохраняются расстояния и углы.
Представление
об осевой симметрии дает перегибание листа бумаги. При этом линия сгиба
будет осью симметрии, а каждая точка листа совместится с симметричной
точкой.
В природе оси симметрии имеют листья деревьев, лепестки цветов, бабочки, стрекозы и мн. др.
MK=(7+3;4-0)=(10;4) - координаты вектора
|MK| =√(7+3)²+(4-0)²=√100+16=√116 - длина
((-3+7)÷2; (0+4)/2)=(2;2) - координата середины отрезка