Решение в картинке...........
S=((13+23)/2)*5=90
Площадь трапеции равна полусумме оснований умноженных на высоту
Т.к. средняя линия всегда равна удвоенной стороне, напротив которой она расположена, то при взятии MN за 4х, NK за 2х, а MK за 3x, получится, что AB=4x, BC=6x, AC=8x. Тогда Pabc=4х+6х+8х=18х=45см, тогда х=45см/18=2,5см, значит AB=10см, BC=15см, AC=20см.
Ответ: стороны равны 10см, 15см и 20см.
1)
Так как 2 стороны = 4 и 5, значит 3 сторона = 3. Так как это египетский треугольник. Так как этот треугольник - прямоугольный и один из углов равен 60°, значит другой угол = 30° (90°-60°=30°)
2)
Из треугольника BAD ( за теоремой косинусов ) BD²=AB²+AD²-2*AB*AD*cos(45°)⇒BD²=16+36-2*4*6*√2/2⇒BD²=16+36-24√2⇒BD²=( тут будет + и - , то длина не может быть меньшей за 0 ) =
Ответ:
3)
Мы провели CL, и она паралельна и равна CD=8м. Теперь за т.косинусов из треугольника ABL:
BL²=BA²+AL²-2*BA*AL*cosA⇒64=36+25-2*6*5*cos(A)⇒36+25-2*6*5*cos(A)=64⇒-2*6*5*cos(A)=64-61⇒-60*cos(A)=3⇒cos(a)=
Отсюда:
∠
Отсюда угол B=180°-92°=88°
Аналогично с уголм D:
64+25-2*8*5*cos*D)=36⇒89-80*cos(D)=36⇒-80*cos(D)=-53⇒cos(D)=53/80≈0.66
∠D=arccos(0,66)≈48°.
Ответ:∠A=92°,∠B=180°-92°=88° , ∠D=48°, ∠C=180°-48°=132°
Пусть меньшее основание равно 2b, а большее тогда будет 6b
Если провести среднюю линюю и соединить "<span>конец большего основания, не принадлежащий этой стороне" и середину диагонали, не содержащей этот "конец", то получится НЕравнобедренная трапеция с основаниями b и 6b, причем одной из диагоналей этой трапеции будет тот самый отрезок, которым соединены "с<span>ередина одной из боковых сторон и конец большего основания, не принадлежащий этой стороне" исходной трапеции. А вторая диагональ равна 21 - половине диагонали исходной трапеции. </span></span>
<span><span>Точка пересечения делит ЭТИ диагонали на части в отношении, равном отношению оснований, то есть 1:6, - то есть половину диагонали исходной трапеции она делит на отрезки 3 и 18. </span></span>
<span><span>Поэтому всю диагональ исходной трапеции эта точка делит на отрезки 18 и 21+3 = 24.</span></span>