Ответ: сначала начерти равнобедренный Δ обозначь абс три его стороны и проведи медиану ну высоту вм .
BM медиана и высота Δ ABC - равнобедренный
Δ BM биссектриса ∠ MBC =20 °
∠BCA = 70 °
Я пишу решение "вслепую", так что проверяйте потом.
Пусть O1 - центр окружности радиуса 4 (на ней пусть лежит точка A); O2 - центр второй окружности.
Тут кругом прямые углы. Логичнее начать с пункта в)
Отрезки O1A и O2B оба перпендикулярны AB => O1A II O2B;
=> ∠AO1P + ∠BO2P = 180°; Это центральные углы дуг AP и BP;
=> ∠PAB + ∠PBA = 90°; => ∠APB = 90°;
б) O1K - биссектриса ∠AKP; O2K = биссектриса ∠BKP;
Половины этих углов в сумме составляют ∠O1KO2; то есть
∠O1KO2 = 90°;
PK - высота к гипотенузе в прямоугольном треугольнике O1KO2;
и она делит гипотенузу на отрезки 4 и 11; поэтому PK^2 = 4*11 = 44;
PK = 2√11
а) AB найти проще всего. Из O1 надо провести прямую перпендикулярно O2B (и параллельно AB); получается прямоугольный треугольник с гипотенузой 4 + 11 =15; и катетом 11 - 4 = 7; откуда AB^2 = 15^2 - 7^2 = 11*16;
AB = 4√11;
PK = AB/2; что совсем не удивительно (я тут нарочно схитрил, чтобы подольше понабирать решение.)
Дело в том, что PK - медиана в прямоугольном треугольнике APB, то есть PK = AB/2; сразу без всяких вычислений.
Но зато ответ получен двумя разными способами. Можно выбирать, что считать и каким способом, PK или AB...
АС - общая сторона, 3 и 4 угол внутренние накрест лежащие при параллельных АD и BC, так же и с углами 2 и 1, они равны
Сумма смежных углов равна 180°, значит нам известна сумма вертикальных углов. Вертикальные углы равны, значит каждый из данных вертикальных углов равен 204/2=102°.
∠МОD=180-102=78°.
<span>Параллельные прямые,пересекающие плоскость соответственно в точках В1 и С1, с прямой АВ образуют плоскость, в которой находятся подобные треугольники АСС</span>₁ и АВВ₁.
Из подобия треугольников вытекает пропорция:
ВВ₁ / АВ = СС₁ / АС.
Тогда ВВ₁ = 8*3 / 4 = 6.