РассмотримΔАBM:
∠A=180°-120°=60°;∠AMB90°;⇒
∠ABM=90°-60°=30°;
AB=4см(гипотенуза)⇒
АМ=АВ/2=2см(сторона,лежащая против угла 30°);
AD=AB=4см;
MD=4-2=2(см);
ВМ²=АВ²-АМ²;⇒
ВМ=√(АВ²-АМ²)=√(16-4)=√12=2√3;
ΔABM=ΔBCN(AB=BC;∠A=∠C;)⇒
ВМ=ВN;
ΔMBN:∠B=120°-2·30°=60°;
BM=BN;∠BNM=∠BMN=(180°-60°)/2=60°;⇒
MN=BM=BN;
В рб треугольниках медиана является биссектрисой и высотой.
угол kmc = 106:2=53
угол Mkc= 90
угол mck= 180-53-90=37
Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.
Рассмотрим четырехугольник ABCD. Проведем в нем две диагонали AC и BD, которые будут пересекаться в точке О и делятся этой точкой пополам.
<em>Исходя из геометрии данной задачи, длина диагонали квадрата будет численно равна диаметру данного круга, а так как это квадрат найдем его сторону:</em>
<em>Площадь круга равна:</em>
<em>Площадь квадрата равна:</em>
<em>Тогда площадь части круга, не накрытой квадратом, будет численно равна разности площадей круга и квадрата, получаем:</em>
<u><em>Ответ:</em></u>
Если обозначить угол OAC = α; и угол OAD = β;
то по условию sin(β) = 13/25; sin(α) = 7/25;
и легко найти cos(α) = 24/25;
<em>Я на всякий случай один раз напомню, что </em>
<em>AO, BO, CO - биссектрисы углов треугольника ABC, </em>
<em>точка O равноудалена от AC, AB, BC, на r = 7, само собой. </em>
<em>и угол BCA = угол CAD; </em>
Легко видеть, что угол OCB = (β - α)/2; угол OBC = π/2 - (β + α)/2;
Отсюда BC = r*(ctg(β/2 - α/2) + tg(β/2 + α/2));
<em>ctg(β/2 - α/2) + tg(β/2 + α/2) = cos(β/2 - α/2)/sin(β/2 - α/2) + sin(β/2 + α/2)/cos(β/2 + α/2) = ((cos(β/2 + α/2)*cos(β/2 - α/2) + sin(β/2 + α/2)*sin(β/2 - α/2))/(sin(β/2 - α/2)*cos(β/2 + α/2)) = 2*cos(α)/((sin(β) - sin(α));</em>
получилось
BC = r*2*cos(α)/(sin(β) - sin(α)) = 7*2*24/(13 - 7) = 56.
Расстояние между BC и AD равно 7 + 13 = 20;
Отсюда площадь параллелограмма ABCD равна 20*56 = 1120;