Радиус описанной около правильного треугольника окружности равен
Радиус вписанной в квадрат окружности равен половине его стороны, значит
Площадь квадрата равна квадрату его стороны
Ответ: 4a^2/3
Треугольники NMD и ВМС подобны по трём углам( общий вертикальный и накрест лежащие при основаниях). По условию ND=1/2AD. Но АD=BC. Следовательно ND/BC=1/2. То есть коэффициент подобия =1/2. Тогда MN/CN=1/2. Или CM=2MN. Но CN=CM+MN=2MN+MN=3MN. Тогда CM/CN=2MN/3MN=2/3.
ДОКАЗАТЕЛЬСТВО:
Т.к., Н - середина КЕ, то КН=НЕ; ∠1 = ∠2; KF=EP, следовательно ΔKFH=ΔEPH по углу и двум прилежащим к нему сторонам.
В ΔАВС АС=21, АВ=10, ВС=17
Прямоугольник КЛМН - вершины К и Н принадлежат АС, Л - АВ, М - ВС.
Пусть КЛ равно х, тогда КН=ЛМ=Р/2-х=12-х (исходя из периметра прямоугольника).
ВД - высота ΔАВС, О - точка пересечения ВД и ЛМ, а ВО - высота ΔЛВМ.
Найдем площадь ΔАВС по ф.Герона:
S=√р(р-а)(р-b)(p-c)=√24*3*14*7=√7056=84,
где p=1/2(a+b+c)=1/2(21+10+17)=24.
Тогда ВД=2S/АС=2*84/21=8, тогда ВО=8-х.
Т.к. ЛМ параллельна АС, то ΔАВС и ΔЛВМ подобны:
ВО/ВД=ЛМ/АС , (8-х)/8=(12-х)/21
21(8-х)=8(12-х)
72=13х
х=72/13=5 7/13 - одна сторона
12-5 7/13= 6 6/13 - другая сторона
Составим пропорцию:УголAOB(больший)/133=УголAOB(меньший/дуга AB;360-45/133=45/дуга AB;,следовательно AB=133*45/315=5985/315=19. AB(меньшая)=19.