Т.к. ABC вписанный, то дуга AC=2ABC=112 => дуга ABC=360-112=248. Угол AOC внутри четырехугольника ABCO равен 248, как центральный=> BCO=360-56-15-248=41. Ответ: 48.
Пусть точка В <span>находится на оси Ох, а точка С - в плоскости YОZ.
Координата х точки С равна 0.
Проекция отрезка ВС на плоскость ХОУ делится проекцией точки А на эту плоскость пополам.
Из уравнения середины отрезка имеем:
Хв = 2Ха-Хс = 2*2-0 = 4.
Координаты точки В по y и z равны 0.
Теперь можно определить длину ВС как 2 отрезка АВ:
L(BC) = 2</span>√((4-2)²+(0-6)²+(0-3)²) = 2√(4+36+9) = 2√49 = 2*7 = 14.
<span>Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.</span>
Нет, утверждение не верно, т.к. ромб - это четырехугольник.