Решение во вложенном файле.
1. Тр. ABC = тр. BDC (по двум углам и общей стороне BC).
2. Тр. CDE = тр. CME (по углу 90 градусов, угол DEC = угол ECM как внутр.накрест леж. и по общей стороне EC).
3. Тр.ABD = тр. BDC (по углу 90 градусов, AD=DC, BD - общая).
4. Тр. ACM = тр. AMB (общая сторона AM и по двум равным углам).
5. Тр. APK = тр. DKC (AD=KC, угол APD=угол DKC, угол BAC=угол BCD (AP+PB=KC+BK=>тр. ABC - равнобедренный, а углы при основании равнобедренного тр. равны)).
6. Тр. AKD = тр. LCE (AK=LC, угол KDA=угол LEC, угол BAC= угол BCA (AK+KB=LC+BL=>тр. ABC - равнобедренный, а у равнобедренного тр. углы при основании равны)).
7. Тр. AMB= тр. BNC (углы 90 градусов, угол MBA = угол NBC (как вертикальные), AB=BC); тр. AMC=тр. ANC (тр. AMB+тр. ABC=тр. BNC+тр. ABC).
8. Тр. BDK=тр. KEC (BK=KC, угол BDK = угол KEC, BD=EC); тр. ADK= тр. AEK (углы 90 градусов, (исходя из прошлого утверждения равенства) DK=KE (стороны равных тр. равны), AK-общая).
Решение:
I. NOA = 1/3 прямого угла(по условию) = 1/3 × 90° = 30°.
II. Угол AOC = угол NOA + угол NOC.
Угол NOA = 30°(их первого пункта)
Угол AOC = 90°(по условию), следовательно угол NOC = 60°.
III. Угол DON = угол NOA + угол AOD = 30° + 90°(угол AOD = 90°, по условию; угол NOA = 30°, из первого пункта) = 120°.
IV. Угол NOB = угол NOC + угол BOC = 60° + 90°(угол NOC = 60°, из второго пункта; угол BOC = 90°, по условию) = 150°.
Ответ: 30°, 60°, 120°, 150°.
Назовем высоту СД. Тогда ВД - проеция катета ВС, а АД - проекция катета АС на гипотенузу. Тогда АД = 36+64 = 100. Примем угол А за х. Тогда угол АСД = 180-90-х=90-х. Отсюда ВСД=90-АСД=90-(90-х)=х. Отсюда угол В=180-ВСД-ВДС=180-х-90=90-х. Следовательно, треугольники АВС, АСД и ВСД пропорциональные (по 3-м углам). Тогда АС/АВ=АД/АС. Тогда АС=корень из (АВ*АД)=корень из (100*64)=80. По теореме Пифагора СВ=корень из (АВ^2-АС^2)= корень из (10000-6400)=60. Периметр = 100+80+60=240
Построим правильную треугольную
призму АВСА1В1С1. Проведем диагональ боковой поверхности АВ1
Ребро (высота) данной призмы ВВ1=√(АВ1^2-AB^2)= √(10^2-6^2)= √(100-36)= √64=8 см.
Площадь боковой поверхности призмы
равна S(б)=P*h (где P – периметр основания призмы, h – высота призмы)
Так как призма правильная то:
P=3a (где а – сторона треугольника)
Р=3*6=18 см
S(б)=18*8=144 кв. см.
Полная площадь призмы равна S=S(б)+2S(ос) (где S(ос) – площадь основания).
<span>Площадь правильного треугольника (площадь
основания) находим по формуле S= (√3*a^2)/4</span>
S= (√3*6^2)/4=(√3*36)/4=9√3 см
S=144+2*9√3=144+18√3 см
Можно так: S<span>=144+2*15.59= (приблизительно)
175.18 см.</span>