Две точки А и А' плоскости называются симметричными относительно прямой
с, если эта прямая проходит через середину отрезка АА' и перпендикулярна
к нему. Каждая точка прямой c считается симметричной самой себе.
Соответствие,
при котором каждой точке А сопоставляется симметричная ей относительно
прямой с точка А', называется осевой симметрией. Прямая с называется
осью симметрии.
Две фигуры F и F' называются симметричными
относительно оси с, если каждой точке одной фигуры соответствует
симметричная точка другой фигуры.
Фигура F называется симметричной относительно оси с, если она симметрична сама себе.
Примем без доказательства, что при симметрии прямые переходят в прямые, причем сохраняются расстояния и углы.
Представление
об осевой симметрии дает перегибание листа бумаги. При этом линия сгиба
будет осью симметрии, а каждая точка листа совместится с симметричной
точкой.
В природе оси симметрии имеют листья деревьев, лепестки цветов, бабочки, стрекозы и мн. др.
По теореме пифагора АС^2=АВ^2-СВ^2
АС= Sqrt44
P(abc)= 12+10+sqrt44= 24sqrt11
Sqrt- это квадратный корень
СВ^2=АВ·ВД, АВ=АД+ДВ. АВ=78
СВ^2=78·54 СВ=6\/117
АС^2=78·24. АС=4\/117.
Точка М - середина отрезка AC
M = 1/2(A+C) = 1/2(2;4) = (1;2)
|BM| = √((-2-1)²+(-2-2)²) = √(3²+4²) = √25 = 5
∠А=∠В=50°
∠ВАD=25° (т.к. биссектриса)
∠ABD=25° (как биссектриса)
∠А+∠В+∠D=180°
25+25+∠D=180°
∠D=180-50
∠D=130°