1. Дан тупой угол трапеции. Значит острый равен 180°-120°=60° (свойство трапеции).
2. Опускаем высоту из тупого угла на большее основание. Эта высота делит большее основание на два отрезка, один из которых равен полуразности, а второй - полусумме оснований (свойство равнобедренной трапеции).
3. В прямоугольном треугольнике, образованном высотой из тупого угла, один из острых углов равен 60°, значит второй равен 30°. Против угла 30° лежит меньший отрезок большего основания, равный половине гипотенузы (боковой стороны трапеции), то есть равен 3. Тогда больший отрезок основания равен 3+4=7см. Вспомним, что это - полусумма оснований.
4. Найдем по Пифагору высоту трапеции: h=√(6²-3²)=3√3см.
5. Площадь трапеции равна произведению полусуммы оснований на высоту, то есть 7*3√3=21√3см.
Ответ: Sт=21√3см².
Пусть угол 2=x°,тогда угол 1 (x+20).Составим уравнение:
x+(x+20)=120°
2x+20=120
2x=120-20
2x=100
x=100:2
x=50,угол 2=50°, х+20=50+20=70°-равен 1 угол.
Ответ:50°,70°
Для внешнего угла в 165° внутренний угол треугольника равен: 180° - 165° = 15°
Для внешнего угла в 70° внутренний угол треугольника равен: 180° - 70° = 110°
Т.к один из углов треугольника больше 90°, то треугольник является тупоугольным