10. По теореме Пифагора:
х = √(BC² + AB²) = √(4² + 6²) = √(16 + 36) = √50 = 5√2 см.
12. У квадрата все стороны равны => CD = AD = x
По теореме Пифагора:
6√2 = √x² + x²
6√2 = x√2
x = 6 см.
14. BC||KD => ∠AKB = 90°.
AК = 1/2AB, т.к. напротив угла в 30° лежит катет, равный половине гипотенузе.
AK = 1/2•2 см = 1 см.
По теореме Пифагора:
х = √AB² - AK² = √4 - 1 = √3 см.
16. ∠ABC - вписанный, опирающийся на диаметр => ∠ABC = 90°.
По теореме Пифагора:
AC = √AB² + BC² = √3² + 4² = √25 = 5 см.
AC = 2R
OB = R = х
Значит, x = 1/2AC = 2,5 см.
Вот рисунок. Вторая окружность точно попадает под диаметр первой.
Ее диаметр равен радиусу 1 окружности, 4 см.
Ответ: r = 2 см.
Одна сторона равна 5, а другая 7
Угол, который надо найти_ внешний угол при вершине В, он равен сумме двух внутренних, не смежных с ним,т.е. ∠А+∠С, т.к. в ΔАВД сумма острых равна 90град., то
∠А=90град.-20град., =70град.
Т.к. в ΔАВС АВ=АС, то ∠В=∠С=(180град. - 70град.)/2=55град. И тогда искомый угол СВЕ=70град. +55 град. =125 град.
Можно было бы и так. 180град. -∠АВС=180 град. -55 град. =125 град.
Ответ ∠СВЕ=125 град.