Симметрией относительно прямой l (обозначение: Sl) называют преобразование плоскости, переводящее точку X в такую точку Xў, что l - серединный перпендикуляр к отрезку XXў. Это преобразование называют также осевой симметрией, а l - осью симметрии.
Осевая симметрия пространства есть движение, а значит, обладает всеми свойствами движений: переводит прямую в прямую, отрезок ---в отрезок, луч ---в луч, плоскость ---в плоскость.
Кроме того, это преобразование пространства, совпадающее со своим обратным: композиция двух симметрий относительно одной и той же прямой есть тождественное преобразование.
При симметрии относительно прямой все точки этой прямой, и только они, остаются на месте (неподвижные точки преобразования). Прямые, перпендикулярные оси симметрии, переходят в себя. Плоскости, перпендикулярные оси симметрии также переходят в себя.
Осевая симметрия есть поворот относительно оси симметрии на угол 180град.
Симметрия относительно прямой является движением первого рода (не меняет ориентацию тетраэдра).
Дано:
Δ АВС; АД:ДВ=5:3; ДЕ║АС; АС=16 см.
Найти ДЕ.
Решение:
Δ АВС подобен Δ ДВЕ по 1 признаку подобия.
Следовательно, АВ\ДВ=АС\ДЕ
(5+3)\3=16\ДЕ
ДЕ=16*3:8=6 см
Ответ: 6 см.
Решение в приложении. Должно быть понятно.
Т.к. ВМ медиана, то точка М делит АС пополам, значит АМ=МС=48,5. Треугольник ВМС равнобедр., значит высота к основанию ВН будет и медианой, которая делит МС пополам. МН=НС=(48,5)/2=24,25. Значит, искомая АН=АС-НС=97-24,25=72,75.
сумма внутренних углов выпуклого многоуг-ка равна 180*(n-2), где n - число сторон. В нашем случае 180*(n-2)=120+130*(n-1); => 180n-360=120+130n-130; => 180n-130n=
=120-130+360; => 50n=350; => n=7
ОТВЕТ: 7 сторон