1)1 тупой,2 острых.
2)3 острых
3)1 прямой 1 тупой 1 острый.
Находим координаты точки А как пересечение заданных прямых,
<span>2x+3y−1=0
</span><span>3x−y−3=0 умножим на 3
</span><span>2x+3y−1=0
</span><span>9x−3y−9=0
</span>__________
11х -10 = 0 х = 10/11
у = (-2х+1)/3 = (-2*(10/11)+1)/3 = ((-20/11)+(11/11)/3 = -9/33 = -3/11.
А((10/11); (-3/11)).
Так как абсцисса точки А не 2, то это абсцисса точки В.
Подставим х = 2 в уравнение катета 2х+3у-1 = 0.
Получаем у = (1-2х)/3 = (1-2*2)/3 = -3/3 = -1.
В(2; -1).
Уравнение катета <span>АВ: у = (-2/3)х+(1/3).
</span>Уравнение катета <span>ВС: у = (3/2)х+ в.
</span>Подставим координаты точки В:
-1 = (3/2)*2 + в
в = -1 - 3 = -4.
ВС: у = <span>(3/2)х - 4 или 3х - 2у - 8 = 0.
Точку С находим решением системы уравнений второго катета и гипотенузы.
</span><span>3х - 2у - 8 = 0.
</span>3х - у -3 = 0,
Вычтем их второго уравнения первое: у = -5.
х = (у + 3)/3 = (-5 + 3) / 3 = -2/3.
С((-2/3); -5).
Чертёж треугольника дан в приложении.
Дано: сторона основания а = 8 см, угол наклона бокового ребра к плоскости основания α = 30°.
Находим высоту h основания:
h = a*cos30° = 8√3/2 = 4√3.
Проекция бокового ребра на основание равна:
(2/3)*h = (2/3)*(4√3) = 8√3/3.
Высота Н пирамиды равна:
Н = ((2/3)*h)*tgα = (8√3/3)*(1/√3) = 8/3.
Площадь So основания равна
So = a²√3/4 = 8²√3/4 = 64√3/4 = 16√3 ≈ <span> 27,71281 кв.ед</span><span>.
Периметр основания Р = 3а = 3*8 = 24.
Находим апофему А, проекция которой на основание равна (1/3)h.
</span>(1/3)h = (1/3)*(4√3) = 4√3/3.<span>
A = </span>√(H² +( (1/3)h)²) = √((8/3)² + (4√3/3)²) = √((64/9) + (48/9)) =
= √(112/9) = 4√7/3 ≈ <span>
3,527668</span><span>.
</span><span>Площадь Sбок боковой поверхности равна:
Sбок = (1/2)РА = (1/2)*24*(</span> 4√7/3) = 16√7 ≈<span>
42,33202 кв.ед.</span><span>
Площадь S полной поверхности пирамиды равна:
S = So + Sбок = (</span>16√3) + (16√7) = 16(√3 + √7) ≈ <span>
70,04483</span>.
Объём пирамиды равен:
V = (1/3)So*H = (1/3)*(16√3)*(8/3) = (128√3/9) ≈ <span><span>24,63361 куб.ед.</span></span>
Угол dba = 360 - 180 - 2*30= 120
Ответ: 120 градусов