Расстояние между концами диаметра
d = √((-3+2)²+(2-2)²) = √1 = 1
r = d/2 = 1/2
Если окружность касается координатных осей - то она находится от них на расстоянии r
x₀ = 1/2 или x₀ = -1/2,
y₀ = 1/2 или y₀ = -1/2.
Но в 4-й четверти x>0, y<0
x₀ = 1/2, y₀ = -1/2.
И уравнение окружности
(x-1/2)²+(y+1/2)² = (1/2)²
S=¹/₂AB*BC*sinB. тебе осталось лишь посчитать)
Вопрос непонятен, но картинки посмотрите, может, в них есть то, что нужно.
Угол между ребром АА1 и плоскостью треугольника АВ1D1 равен углу между ребром АА1 и его проекцией на плоскость треугольника АВ1D1.
Проведем В1D1. На середине В1D1 поставим точку Е1, и проведем отрезок АЕ1. Угол А1АЕ1 и будет искомым. Если ребро куба равно а, то В1D1=а*√(2). Проведем А1Е1. Очевидно, что А1Е1=В1Е1=Е1D1=а*√(2)/2. АЕ1 вычисляем по Пифагору, АЕ1=а*√(3/2). Косинус искомого угла равен а/а*√(3/2)=√(2/3).
Дано:
- окружность с центром О и R = 8 см,
- хорда АВ = 9 см,
- <span>точка С такая,что AC:BC=1:4.
Находим расстояние ОД от центра окружности до хорды АВ (точка Д - середина АВ).
ОД = </span>√(R² - (AB/2)²) = √(64 - 4.5²) = √(64 - (9/2)² = √(175/4) = 5√7/2 см.
Обозначим СА = х.
Из условия СА/СВ = 1/4 находим:
х/(х + 9) = 1/4,
4х = х + 9,
3х = 9,
х = 9/3 = 3 см.
<span>Длина отрезка СД равна:
СД = 4,5 + 3 = 7,5 см.
Тогда искомое расстояние СО равно:
СО = </span>√(СД² + ОД²) = √((225/4) + (175/4)) = √(400/4) = 10 см.<span>
</span>