AB = 6 см
DC = 10 см
BD = 17 см
BH - высота.
HC = (DC-AB)/2 = (10-6)/2 = 2 см
DH = DC-HC = 10-2 = 8 см
Из ΔBHD по теореме Пифагора находим BH:
BH = √(BD²-DH²) = √(289-64) = √225 = 15 см
S трапеции = (a+b)/2 * h = (AB+DC)/2 * BH = (6+10)/2 * 15 = 120 см²
Угол С = углу А = 2 углам АСD = 50 градусов
Треугольники BCO и DAO подобные; 3:5=12:AD, AD=20
Обозначим середину стороны AB как E (см. рисунки). ED — средняя линия треугольника ABC, которая параллельна стороне AC. Следовательно, угол BAC — прямой.
Теперь есть два решения.
1) Искомый угол в два раза меньше прямого угла. Тогда он равен 45°.
2) Искомый угол в два раза меньше второго острого угла. Тогда, поскольку сумма двух острых равна 90°, он равен 2x+x=90°; 3x=90°; x=30°.
Ответ: либо 30°, либо 45° (если допустить, что в треугольнике есть два наименьших угла).