Диагонали квадрата равны, точкой пересечения делятся пополам
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы противоположных сторон равны, следовательно, сумма боковых сторон равна сумме оснований трапеции: 3+7 = 10. Средняя линия трапеции равна полусумме оснований: 10:2 = 5
<span>В равнобокую трапецию вписана окружность, которая делит боковую сторону трапеции точкой касания на отрезки 3 см и 12 см.
</span>Пусть верхнее основание трапеции равно а, нижнее - в.
По свойству касательной из точки к окружности определяем:
а = 2*3 = 6 см.
в = 2*12 = 24 см.
Высоту Н трапеции находим по Пифагору:
Н = √(3 + 12)² - ((24 - 6)/2)²) = √(225 - 81) = √144 = 12 см.
Ответ: S = ((6 + 24)/2)*12 = 15*12 = 180 см².
Всё складываеш и отнимаешь от 360 получившееся