Решение в скане.................
(38-8):2=15(см) - бічна сторона 1 трикутника
15-5=10(см) - бічна сторона 2 трикутника
10*2+8=28(см) - периметр другого трикутника
Имеется два прямоугольных треугольника АМО и ВМО. Эти треугольники равны по одному из признаков равенства прямоугольных треуг-ов: если катет и прилежащий к нему острый угол одного прямоугольного треуг-ка соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. В нашем случае ОМ - общий катет, а углы АОМ и ВОМ равны, поскольку ОМ - биссектриса. У равных треугольников равны и соответственные стороны АМ и ВМ.
<u>1) Рассмотрим рис.1</u> вложения
Трапеция равнобедренная, т.к.<em> в окружность можно вписать только равнобедренную трапецию. </em>
ВК=ВД по условию, АВ=СД как боковые стороны равнобедренной трапеции.
В окружности равные хорды опираются на равные дуги. .
Равные хорды ВК и ВД опираются на равные дуги, следовательно, на равные дуги опираются вписанные углы ВАК и ВСД.
<em>Вписанные углы, опирающиеся на равные дуги, равны.</em><em> </em>
Вписанные углы АКВ и СВД опираются на равные дуги и потому равны.
В треугольниках АВК и СВД по два равных угла, следовательно, равны в них и углы АВК и ВДС ( на рисунке равные углы окрашены в одинаковый цвет).
В этих треугольниках между равным сторонами АВ = ДС и ВК = ВД содержатся равные углы - отсюда эти треугольники равны.
АК=ВС=4 см
--------------------------------------
2) Сделаем рисунок. Во вложении это рис.2
Пусть касательная к окружности будет МН, точка касания А, хорда, имеющая с касательной общую точку на окружности, АВ.
Проведем через центр окружности ещё одну хорду с общей точкой с касательной в точке А. Эта хорда - диаметр АС.
Угол САН - прямой ( диаметр к точке касания перпендикулярен касательной) и равен половине дуги АеВдС, которая равна 180 градусов
<u>Угол НАС равен сумме углов САВ и ВАН, </u> равен половине градусной меры дуги СдВеА и равен 90 градусам.
Дуга АеВдС равна сумме дуг ВдС и ВеА
Угол САВ, как вписанный, равен половине градусной меры дуги ВдС
Так как половины дуг АеВ и ВдС в сумме равны 90 градусам, угол НАВ равен половине градусной меры дуги АеВ, что и требовалось доказать.
Тело вращения -конус.
диаметр основания =основанию равнобедренного треугольника
образующая = боковой стороне равнобедренного треугольника
V=(1/3)*Sосн*H
V=(1/3)*π*R² *H
Н-?
рассмотрим прямоугольный треугольник:
катет - высота конуса. найти
катет - радиус основания конуса =5 см (10:2=5)
гипотенуза - образующая конуса =13 см
по теореме Пифагора:
13²=5²+Н²
Н=12 см
V=(1/3)*π*5² *12=100π
V=100π см³