Рассмотрим треугольник ОВС - прямоугольный, угол ОСВ=90 градусов (по условию).
Если угол ОВА=45 градусов, то и угол СОВ=45 градусов, а СВ=ОС=6 см.
АВ=2ОС=2*6=12 см.
Ответ: 12 см.
Пусть дан треугольник АВС, где
С=90°, СН - высота, АВ=4 СН по условию.
Проведем медиану СМ.
<em>Медиана прямоугольного треугольника, проведенная из прямого угла, равна половине гипотенузы</em>.
СМ=АВ:2=2 СН
Треугольник СМВ - равнобедренный ( СМ=МВ)
Угол МСВ=угол МВС
В прямоугольном треугольнике МНС катет СН равен половине гипотенузы СМ.
<span>Катет, равный половине гипотенузы, противолежит углу 30° (<em>из теоремы о катете, противолежащем углу 30</em></span><em>°</em><span>)
</span><span>Сумма углов треугольника равна 180°
</span><span>Угол МСВ=угол МВС=(180°-угол СМВ):2=(180°-30°):2=75°
</span><span>Сумма острых углов прямоугольного треугольника равна 90°
</span><span>Тогда в треугольнике АСВ
<u>угол</u><u> А</u>=90°-75°=15°</span>
сторона квадрата была равна y, тогда его площадь была равна y². После увеличения сторона квадрата стала yx, а его площадь - (yx)².
(yx)²/y²=32
x²=32
x=4√2
Вот так
9 сторон. Есть формула сумма углов многоугольника равна 180*(количество сторон – 2) следовательно 1260=180*(н–2) н=9