острый вписаный угол ADC -опирается на КОРОТКУЮ дугу АС
размер этой дуги 2*40=80 град
тупой вписаный угол AВС -опирается на ДЛИННУЮ дугу
СА=360 -дугаАС=360-80=280 град
вписаный угол АВС опирается на ДЛИННУЮ дугу СА
размер АВС угла 280/2=140 град
Ответ 3)140 град
1)По теореме Пифагора длина ьоковой стороны треугольника равна √12²+5²=13
2) пЛОЩАДЬ ТРЕУГОЛЬНИКА равна половине произведения основания на высоту треугольника, т.е. S=1/2*a*h
пЛОЩАДЬ ТРЕУГОЛЬНИКА равна половине произведения периметра треугольника на радиус вписанной окружности, т.е. S=1/2*P*r
Отсюда r=(10*12)/(10+13+13)=10/3
3)Рассмотрим треугольник ОАМ, АО=R, ОМ=12-R, АМ=5
По теореме Пифагора АМ²+ОМ²=АО²
R²=(12-R)²+25
R²=144-24R+R²+25
24R=169
R=169/24
есть теорема - если диагонали четырехугольника в точке пересечения делятся пополам то это параллелограмм. Док-во - четырехугольник АВСД, АС и ВД диагонали, О-пересечение диагоналей, АО=СО, ВО=ДО, треугольник АОВ=треугольник СОД по двум сторонам (АО=СО, ВО=ДО) и углу между ними (уголАОВ=уголСОД как вертикальные) значит АВ=СД, уголВАО=уголДСО - это внутренние разносторонние углы, если при пересечении двух прямых третьей прямой внутренние разносторонние углы равны то прямые параллельны, АВ параллельна СД, если в четырехугольнике две стороны попарно равны и параллельны то четырехугольник - параллелограмм, АВСД-параллелограмм, также можно доказать что АД=ВС, АД параллельно ВС, АВ+ВС=13,6, периметр АВСД=2*(АВ+ВС)=2*13,6=27,2