Обратим внимание на то, что угол АВС=91°, следовательно АС - не диаметр и ∠САD не равен 90°.
Если из точки, лежащей вне круга, проведены секущая и касательная, то искомый угол γ = (β – α)/2 , где <span>γ - угол между касательной и секущей, </span> α - меньшая дуга окружности, заключенная между сторонами угла, β- большая.
На меньшую дугу опирается вписанный угол АСВ=72°, он равен половине дуги, ⇒ градусная мера дуги АВ вдвое больше и равна 144°
На большую дугу АС опирается вписанный угол, равный 91°, ⇒ градусная мера дуги АС вдвое больше и равна 182°.
Тогда ∠ADC =(182°-144°):2=19°
Чертим тр-кАВС (угол С-тупой)Сторона Вс менньше стороны АВ в 2 раза
Дано: тр-к АВС
КС и АВ пересекаются (К-вне АВС)
тр-к КСА подобен(знак!!!) АВС
Найти. cosAKC
Решение. Найдем наибольший угол тр-ка АВС
по теореме косинусов: АВ^2=AC^2+BC^2-2 AB*ACcosC
25^2=2^2+11^2-2*2*11*cosC
625=4+121-44cosC; cosC=(125-625)/44; cosC=-500/44=-125/11???(не может так быть! -1=<cosc=<1!!!)
По условию треугольники подобны,в тр.КСА угол КАС больше 90,
Соответственные углы подобных треугольников равны, следовательно,
cos(KAC)=cosC=...
Дано:
ABCD - трапеция
BC ║ AD
AB = 10 см
CD = 17 см
BC = 20 см
CD = 41 см
СН ⊥ СD
CH - h - высота
h - ?
Решение:
1) Проведем СК ║ АВ
В получившемся параллелограмме АВСК противоположные стороны равны:
АВ = СК = 10 см
ВС = КА = 20 см
2) Рассмотрим ΔCKD
CD = 17 см
CK = 10 см
KD = AD - KA = 41 - 20 = 21 см
Высота СН треугольника СКD является высотой данной трапеции.
3)А теперь найдём площадь ΔCKD по трем его сторонам по формуле Герона.
где р - полупериметр
=84
S = 84 cм²
4)
А теперь с помощью формулы площади треугольника через высоту
найдём высоту h
h = CK = 8 см
Ответ: 8 см.
1. OM=MN(по условию)-> треуг OMN - равнобедренный->
2. угол MOK=углу MNK
3. MK- общая сторона
Значит, треуг равны по двум сторонам и углу между ними