Если стороны образуют арифметическую прогрессию, то их длины:
c
b=c+d
a=b+d=c+2d
Угол в 120° является наибольшим. Поэтому напротив него лежит наибольшая сторона.
Воспользуемся теоремой косинусов:
a²=b²+c²-2bc cos120°
(c+2d)²=(c+d)²+c²-2(c+d)c*(-0.5)
c²+4cd+4d²=c²+2cd+d²+c²+c²+cd
4cd+4d²=3cd+d²+2c²
3d²+cd-2c²=0
Решаем получившееся квадратное уравнение относительно d:
D=c²-4*3(-2c²)=c²+24c²=25c²
√D=5c
d=(-c+5c)/(2*3)=2c/3
(Отрицательные значения корня не рассматриваем, исходя из геометрического смысла)
Следовательно, длины сторон:
с
b=c+2c/3=5c/3
a=c+2*2c/3=7c/3
Тогда искомое отношение сторон
с:b:a=c:5c/3:7c/3=3:5:7
Ответ: 3:5:7
180(n-2)=360*2 (n - число углов (сторон) мн-ка, 360градусов - сумма внешних углов, взятых по одному при каждой вершине);
180*(n-2)=720;
n-2=4;
n=6
Ответ: шесть сторон.
P=2(A+B)
P=100
ОДНА СТОРОНА-Х,ТОГДА ДРУГАЯ Х+8
УРАВНЕНИЕ:
2(Х+(Х+8))=100
2(Х+Х+8)=100
2(2Х+8)=100
4Х+16=100
4Х=100-16
4Х=84
Х=84:4
Х=21
ОДНА СТОРОНА=21 ТОГДА ВТОРАЯ=21+8=29
ОТВЕТ:21
Найдем градусную меру угла В. Так как угол В на 8 градусов больше угла А, то: угол В = угол А + 8 градусов; угол В = 15 градусов + 8 градусов; угол В = 23 градуса. Сумма всех внутренних углов любого треугольника равна 180 градусов (теорема), тогда: угол А + угол В + угол С = 180 градусов; 15 градусов + 23 градуса + угол С = 180 градусов; угол С = 180 градусов - 38 градусов; угол С = 142 градуса. Внутренний угол С и внешний угол при вершине С BCD являются смежными углами и вместе составляют развернутый угол, который равен 180 градусам, тогда: угол С + угол BCD = 180 градусов; 142 градуса + угол BCD = 180 градусов; угол BCD = 180 градусов - 142 градуса; угол BCD = 38 градусов. Ответ: угол BCD = 38 градусов.
14,8*2+18,9*2=29,6+27,8=57,4