Параллелограмм ABCD.
По теореме косинусов в треугольнике АВD квадрат стороны ВD (диагональ параллелограмма) равен: BD² = AB²+AD²-CosA.
По теореме косинусов в треугольнике АCD квадрат стороны AC (диагональ параллелограмма) равен: AC² = AD²+DC²-Cos(180°-A). Заметим, что DC=АВ =2(стороны параллелограмма), угол <D = 180° - <A (углы при основании параллелограмма) и Cos(180°-A)= -CosA. Имеем:
BD² = AB²+AD²-CosA = 20-16CosA.
AC² = AD²+DC²-Cos(180°-A) = 20+16CosA.
BD/AC = √3/√7(дано) Тогда BD²/AC² =3/7. Подставляем значения и получаем:
<span>CosA = 0,5. Значит <A = 60°. Формула площади параллелограмма: S=a*b*SinA = 8*0,866 = 6,928.</span>
Угол А+Угол В=90 градусов
Синус угла А = Косинус угла В
<span>В прямоугольном треугольнике синус одного угла равен косинусу другого угла.
Cos B = Sin A = 3/5 = 0,6
ОТВЕТ: 0,6 </span>
Боковая поверхность цилиндра - прямоугольник, со сторонами: a= 2πR, b=H=4
S прямоуг =a*b,=>
Sбок.пов=2πRH
64π=2πR*4
R=8 м
Ну треугольники равны по двум сторонам и углу между ними
Пусть трапеция имеет вершины АВСD. Угол D=45(гр.) ну он тип угол при основании.
По свойству прямоугольной трапеции наименьшая боковая сторона - это сторона при прямом угле. Т.е. АВ=9. То есть и высота в трапеции равна 9.
Строим высоту СН=9( только что писала почему равную 9). И рассматриваем треугольник СDH: угол CHD - прямой, угол D=45(гр.), следовательно и угол HCD=45(гр.)(180-90-45=45)
Значит, треугольник СНD - равнобедренный и СН=НD=9.
Найдем, чему равна боковая сторона СD. По теореме Пифагора: CD^2=81+81=162==> CD= 9 корней из 18 ( не могу вставить формулу: выглядит примерно так 9\|18'
Известно, что сумма боковых сторон трапеции равна сумме оснований: тогда сумма оснований равна ==> 9+(9\|18':2)+(9\|18':2) (НD+AH+BC)
А площадь трапеции равна: 1/2 суммы оснований умноженная на высоту, т.е. (НD+AH+BC)*CH= 1/2(9+9\18')*9=4,5*(9+9\|18')=4,5*9+4,5*9\|18'=40,5+40,5\|18'
Может это как то преобразуется, но по-моему решается так..;)