Окружность (x-6)^2 + (y-9)^2 = 225 имеет центр Q(6, 9) и радиус R = 15.
Окружность с центром P(-2; 3) и радиусом r задается уравнением
(x+2)^2 + (y-3)^2 = r^2
Если эти две окружности касаются друг друга в 1 точке, то система
имеет только одно решение.
{ (x-6)^2 + (y-9)^2 = 225
{ (x+2)^2 + (y-3)^2 = r^2
Раскроем скобки
{ x^2 - 12x + 36 + y^2 - 18y + 81 = 225
{ x^2 + 4x + 4 + y^2 - 6y + 9 = r^2
Упростим
{ x^2 - 12x + y^2 - 18y = 225 - 36 - 81 = 108
{ x^2 + 4x + y^2 - 6y = r^2 - 4 - 9 = r^2 - 13
Вычтем из 2 уравнения 1 уравнение
4x - 6y + 12x + 18y = r^2 - 13 - 108
16x + 12y = r^2 - 121 = (r - 11)(r + 11)
Очевидно, максимальный радиус равен 11
Ответ на прикреплённом фото
угол АВС=70°(как смежный с DBC)
углы А и С равны, как углы при основании и по сумме углов треугольника каждый из них равен 55°
Накрест лежащие: 4 и 6; 3 и 5
Соответственные: 1 и 5; 2 и 6; 3 и 7; 4 и 8
Односторонние: 4 и 5; 3 и 6