Пусть ABC – заданный равнобедренный треугольник. АВ=16 см – его основание, которое лежит на плоскости a . СН=6 см – расстояние от вершины С до плоскости a. Проекции боковых сторон треугольника АС и ВС, отрезки АН и ВН соответственно, образуют угол 90°. Так как АСВ – равнобедренный, то и АНВ – тоже равнобедренный, АН=ВН. Кроме того, в нём АНВ=90° по условию. Строим СК – искомую высоту АСВ. Она одновременно является его медианой, значит АК=ВК=0,5*АВ=0,5*16=8 см. Проекция СК на плоскость a - НК является медианой равнобедренного АНВ, а следовательно одновременно его высотой и биссектрисой. Тогда, АНК=ВНК=0,5*90=45°. В АНК: АНК=45°, НКА=90° следовательно, КАН=45°. Таким образом, АНК – равнобедренный, в нём НК=АК=8 см. Рассмотрим прямоугольный СНК (СНК=90° - по условию). Из него имеем: СК2=СН2+НК2=62+82=100, откуда СК=10 см.
Боковая сторона равна 15см т.к 1/8=5см. Т.к треугольник равнобедренный значит боковые стороны равны. 15+15=30см равны две боковые стороны.Основание равно 40-30=10см. Ответ: 10см.