Высота АМ расположена против угла С. а CН - угла В..
АМ = АС*sin C.
СН = СВ*sin В.
Так как АС = СВ, то высоты относятся как синусы углов С и В.
C = 180 - 2B
sin C = sin 2B = 2sin B*cos B
sin B = √(1-cos²B) = √(1-1/9) = √(8/9) = 2√2/3.
sin C = 2*(2√2/3)*(1/3) = 4√2/9.
Отсюда соотношение высот АМ и СН треугольника ABC составляет:(4√2/9) / (2√2/3) = (4√2*3) / (9*2√2) = 2/3.
Ответ:
Расм. треугольник ВНС за теоремой Пифагора ВС в квадрате =ВН в квадрате+НС в квадрате ВС в квадрате+36+64=100, ВН=10 косинусС=НС: ВС=8:10=0,8.Треугольник АВН имеет две ровные стороны ВН=АН, ВН-высота кутАВС=45 градусов тогда кутА=45 градусов. АС=АН+НС=6+8=14.Расмотрим треугольник АСМ, АМ-медиана.За свойством медианы МС=10:2=5.За теоремой косинусов АМ в квадрате =АС в квадрате+МС в квадрате-2умножить на АС и МС и косинус угла С. АМ в квадрате=198+25-2*14*5*0,8=221-112=109.
АМ= корень квадратный с числа 109. АМ приблезительно равно 10,42
Объяснение:
Так как угол А= 30 градусов, то АВ=4 корня из трёх(супрать угла в 30 градусов лежит катет ровный половине гепатенузы).
па теореме пифагора:
АС^2=АВ ^2 - СВ ^2
АС^2=4корня из 3 - 2 корня из 3 =2 корня из трёх
АС= под корнем 2 корня из трёх