Bd=BE, тогда треугольник DBE-равнобедренный, значит угол D=E, угол ВАС=ВСА, ТАК КАК d=e=BAC=BCA, что и требовалось доказать
А вот я так думаю, что объем пирамиды можно сосчитать так
V = (6*6/2)*6/3 = 36.
Это не тетраэдр. Такая пирамида получается, если взять три взаимно перпендикулярные ОСИ и провести плоскость, отсекающую на осях отрезки, равные 6.
Прямоугольный треугольник с катетами 6 (один из трех) принимается за "основание", а перпендикулярное плоскости этого треугольника третье ребро длины 6 - за высоту, и все дела.
Площадь пирамиды равна сумме площадей ее граней. Найти площадь основания и всех ее граней и сложить.
Вычислить площадь основания по формуле Герона
p=½ (a+b+c)=½ 24=12p=½ (a+b+c)=½ 24=12
12*(12-8)(12-6)(12-10)=12*6*4*2=576
S=√576=24см²
Затем надо вычислить площадь боковой поверхности.
Периметр основания равен 24.
При этом принять во внимание, что:
Если боковые грани наклонены к плоскости основания под одним углом, то:
а) в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
б) высоты боковых граней равны;
в) площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани. Высоту найти любой стороны, поскольку они равны. Затем уже площадь боковых граней и сложить с площадью основания.
Отрезок AC - это диагональ основания ABCD, которое является квадратом. Сразу найти AC не получится, но зато мы можем найти длину отрезка AO теореме Пифагора: √(SA^2 - SO^2) = √(75^2 - 45^2) = 15*√(5^2-3^2) = 15*√16 = 15*4 = 60.
Осталось заметить, что AO - это половина отрезка AC, поскольку центр основания - делит диагональ пополам.
Поэтому AC = 120.