Катеты треугольника относятся друг к другу как 9 к 40.
Пусть длина одного катета 9х, тогда второго 40х.
По теореме пифагора квадрат катетов равен квадрату гипотенузы
(9х) в квадрате + (40х) в квадрате = 82 в квадрате
81 х^2 + 1600 х^2 = 6724. Отсюда х^2 = 4.
х=2.
один катет 9х=18 см
второй катет 40х=80 см
<3+<1+<5=180 град
<5=180-130=50 град
<2=<5=50 град
<1=<2=50 град (углы при основании равнобедренного ΔАВС
<5+<1+<4 = 180 град. (развёрнутый угол)
<4=180-50-50=80 град.
<3=<4=80 град. (накрест лежащие углы)
Дано: сторона основания а = 8 см, угол наклона бокового ребра к плоскости основания α = 30°.
Находим высоту h основания:
h = a*cos30° = 8√3/2 = 4√3 см.
Проекция бокового ребра на основание равна:
(2/3)*h = (2/3)*(4√3) = 8√3/3 см.
Высота Н пирамиды равна:
Н = ((2/3)*h)*tgα = (8√3/3)*√3 = 8 см.
Площадь So основания равна
So = a²√3/4 = 8²√3/4 = 64√3/4 = 16√3 ≈ <span>
27,71281</span> см²<span>.
Периметр основания Р = 3а = 3*8 = 24 см.
Находим апофему А, проекция которой на основание равна (1/3)h.
</span>(1/3)h = (1/3)*(4√3) = 4√3/3 см.<span>
A = </span>√(H² +( (1/3)h)²) = √(8² + (4√3/3)²) = √(64 + (48/9)) =
= √(624/9) = 4√39/3 ≈ <span>8,326664</span><span> см.
</span><span>Площадь Sбок боковой поверхности равна:
Sбок = (1/2)РА = (1/2)*24*(</span> 4√39/3) = 16√39 ≈<span> 99,91997</span> см²<span>.
Площадь S полной поверхности пирамиды равна:
S = So + Sбок = (</span>16√3) + (16√39) = 16(√3 + √39) ≈ <span><span>127,6328</span></span> см².
Объём пирамиды равен:
V = (1/3)So*H = (1/3)*(16√3)*8 = (128√3/3) ≈ <span>73,90083</span> см³.
Углы при основании в равнобедренной трапеции равны.
1) 360-(50+50)=260;
260:2=130°;
ответ: 130
2) два угла по х°, два угла по 2х°;
х+х+2х+2х=360;
х=360:6=60°;
ответ: 60
3) 7х+7х+29х+29х=360;
х=360:72=5;
7*5=35°;
ответ: 35