task/30366215 Дан тетраэдр ABCD. ∠BCD =∠ACD =∠ACB = 90º, СВ =4 , CA =2, CD= 6. M– середина AB , К – середина DС. Найти синус угла между прямой MK и плоскостью DCA .
<u>решение</u> см ПРИЛОЖЕНИЕ ответ: (√14) / 7
параллелограмм АВСД, ВД перпендикулярна АД, площадьАВСД=ВД*АД, 108=9*АД. АД=108/9=12=ВС, треугольникАВД прямоугольный, АВ=корень(АД в квадрате+ВД в квадрате)=корень(144+81)=15=СД
(360-125-79)/2 = 78
ответ: 78 градусов
Использован признак подобия треугольников по двум углам, равенство углов с сонаправленными сторонами
По теореме синусов:
Угол С=180-<B-<A=190-120-45-120=15