∠ВАД=∠АДС как накрест лежащие, значит каждый из них равен 80/2=40°.
∠АДЕ=180-∠АДС=180-40=140°.
ВД - биссектриса угла АДЕ, значит ∠АДВ=140/2=70°.
∠х=∠СДВ как соответственные, значит ∠х=∠АДС+∠АДВ=40+70=110° - это ответ.
Треугольник вписан в окружность радиуса R = abc/(4S).
Находим площадь по формуле Герона: S = √(p(p-a)(p-b)(p-c)).
Полупериметр р = (12+16+20)/2 = 48/2 = 24 см.
S = √(24*12*8*4) = 96 см².
Тогда R = 12*16*20/(4*96) = 10 см.
Плоскость треугольника удалена от центра сферы на расстояние: h = √(26² - 10²) = √(676 - 100) = √576 = 24 см.
1) пусть меньший угол равен х, больший угол равен 5х.
х+5х=90,
6х=90, х=15°, ∠ОАD=15°, ∠ОАВ=5·15=75°.
По условию АС=6 см, тогда ОА=ОВ=ОС=ОD=3 см.
ΔАОВ. ∠АОВ=30°. По теореме косинусов АВ²=АО²+ВО²-2·АО·ВО·соs30°,
АВ²=9+9-2·3·3·√3/2=18-9√3≈2,41,
АВ≈1,55 см.
ΔАОD. АD²=АО²+DО²-2·АО·DО·соs150°=18+9√3≈33,59.
АD≈5,8 см.
Площадь АВСD равна АВ·АD=1,55·5,8≈9 см².
3) ВD⊥АD, АВ=2√2, ВС=2√3, ∠ВАС=60°.
ΔАВD. ∠АВD=90-60=30°.АD=АВ/2=√2.
ВD²=(2√2)²-(√2)²=8-2=6; ВD=√6.
ΔВСD.соsВСD=ВD/ВС=√6/2√3=√2/2; ∠СВD=45°; ∠ВСD=45°.
∠АВС=30°+45°=75°.
СD=ВD=∠6.
АС=АD+СD=√2+√6≈1,41+2,45=3,86 см.
<EAB=150 - внешний угол треугольника АВО =>
=> <EAB=<AOB+<ABO
<AOB=90, т.к. АВСD- ромб и AC и BD -диагонали ромба (взаимно перпендикулярны)
<ABO=<CDO=x, т.к. треуг. АВО=треуг.ВСО, т.е. у них равны соответственные углы
<BAO=<EAO-<EAB=180-150=30
<BAO=<BCO=y=30, т.к. треуг. АВО=треуг.ВСО, т.е.<span> у них равны соответственные углы</span>
2) BF-высота =>в<span> треугольнике AFB: <AFB=90, BF=4 см, <A=60 =>
</span>x=<AB)=90-30=60
Ответ: х=60, у=30