Решение. Пусть треугольник ABC — равнобедренный с основанием ВС, а точки Ах, Вх, Сх — середины его сторон (рис.88). Тогда АВ = AC, ZB = ZC, ВСХ = 1-АВ = 1-АС = СВХ, ВАХ = САХ.
Следовательно, АВАХСХ = АСАХВХ по двум сторонам и углу между ними. Отсюда следует, что АХСХ = АХВХ, т. е. треугольник АХВХСХ — равнобедренный, что и требовалось доказать.
На рисунке изображено осевое сечение конуса (диаметральное сечение шара).
r=ОК=ОМ=2 м, ∠α=∠ВАС=∠ВСА=50°.
АО - биссектриса угла А т.к. точка О - центр вписанной в треугольник окружности, значит ∠ОАК=25°.
В прямоугольном тр-ке АОК АК=ОК/tg∠OAK=r/tg25.
AC=2AK.
В тр-ке АВК ВК=АК·tg∠A=AK·tg50.
Площадь тр-ка АВС:
S=АС·ВК/2=АК·ВК=АК²·tg50=r²·tg50/tg²25=2²·tg50/tg²25≈21.9 м² - это ответ.
<span>для прямоугольного треугольник PEK напишите все его свойства
Прямоугольным называется треугольник, у которого один угол равен 90 градусов, то есть прямой.</span>
Есть теорема что биссектриса делит сторону в таком же отношении как и отношении сторон близких к биссектрисе.
<span>По этой теореме:
AD/DC = AB/BC
DC = AD*BC/AB
DC = 36*32 / 48 = 24 см</span>
Δ ABC _ остроугольный AH ┴ BC ; HK ┴ AB ;HL ┴ AC .
--------------------------------------------------------------------------------------
четырехугольник BKLC<span> вписанный ---> ?</span>
<AKH + < ALH =90° + 90° =180° значит около четырехугольника AKH L можно описать окружность (центр в середине гипотенузе AH ) .
< C + <LKB = <C +<LKH +< BKH = <C +<LKH +90° = <C +<LAH +90° =90° +90°=180°
(<LKH =<LAH как вписанные углы опирающиеся на одну и ту же дугу (HL) .
Следовательно около четырехугольника AKH L можно описать окружность т.е.
четырехугольник BKLC вписанный .