В случае внешнего касания окружностей расстояние между центрами равно сумме радиусов
d = r₁ + r₂ = 7 + 9 = 16 см
Длина окружности основания:
С =2πr
Длина дуги развертки боковой поверхности:
L = 2πl · α / 360°
В конусе длина окружности основания равна длине дуги развертки боковой поверхности:
C = L
2πr = 2πl · α / 360°
r = l · α / 360°
α = r · 360° / l
Так как осевое сечение - правильный треугольник, то
l = 2r
α = r · 360° / (2r) = 360° / 2 = 180°
Равнобедренная трапеция ABCD. Диагональ АС - биссектриса. Тогда тр-к АВС - равнобедренный (угол САD =<FCD - внутренние накрест лежащие при параллельных прямых ВС и AD и секущей АС).
Значит АВ = ВС=CD, то есть периметр трапеции равен 3Х+18 = 48. Отсюда Х=10.
Средняя линия равна (!0+18):2 = 14.