Использовано свойство средней линии треугольника
<span>пара отрезков a, b</span>
<span>допустим, что это стороны ОДНОГО треугольника </span>
пара отрезков с, d
допустим, что это стороны ДРУГОГО треугольника
50 / 10 неравно 6 / 18.5
непропорциональны
поменяем
50 / 18.5 неравно 6/10
непропорциональны
МОЙ ответ НЕТ
<span>** возможно ты найдешь другое отношение</span>
Чертим угол с вершиной О.
<span>От О, как из центра, отмечаем циркулем на сторонах угла равные отрезки ОА и ОВ. Из А и В как из центров с помощью циркуля строим две полуокружности (можно тем же радиусом, можно поменьше). Точки пересечения окружностей и О соединяем лучом ОС, который делит данный угол пополам и является для него биссектрисой. Для угла АОЕ повторяем эту процедуру, применив в качестве центров полуокружностей точки А и С. <span>Точки пересечения и О соединяем прямой ОМ, которая, являясь биссектрисой половины угла АОВ, отделила от него <em>угол АОМ</em>, равный половине угла АОС и <em>равный четверти угла АОВ</em></span></span>
Задача 1
Катет лежащий напротив угла 30 град. равен половине гипотенузы.
7,6*2=15,2 см длина гипотенузы.
Ответ 15,2 см
Задача 2.
Если угол при вершине в равнобедренном треугольнике = 120, то углы при основании =(180-120)/2=30град.
Основание это искомая гипотенуза =5*sin 30=5*1/2=2.5 см
Ответ 2,5 см
Задача 3.
Третий угол будет равен 30 град.
Мы знаем что катет лежащий напров угла 30 град равен половине гипотенузы. Составим уравнение.
х-длина гипотенузы
х/2 - длина катета
х+х/2=36
2х+х=72
3х=72
х=24 см длина гипотенузы
24/2=12 см меньший катет
Ответ 12 см.