Решение подходит к треугольникам разного вида.
<span>В ∆ АВС и АКС угол С - общий, углы А=В – <em>треугольники подобны по первому признаку подобия.</em> Из подобия следует отношение</span>
АС:ВС=КС:АС
<em>Произведение крайних членов пропорции равно произведению средних</em>:
АС²=ВС•KC=12•4=48
<span>AC=√48=4√3</span>
S= 1/2 a*b* sin30= 1/2 7*7* 1/2= 12.25
Угол ВМА развернутый =180,значит 180-48-48=СМА СМА=84
В трапеции АВСД АД=а, ВС=b, ВМ=2 см, S(АВСД)=12 см².
В прямоугольном тр-ке АЕД углы при основании равны, значит он равнобедренный с острыми углами 45°.
S(АЕД)=АД²/4=а²/4,
S(BCД)=ВС²/4=b²/4,
S(АВСД)=S(АЕД)-S(BCД),
12=a²/4-b²/4,
a²-b²=48.
S(АВСД)=h(a+b)/2 ⇒ a+b=2S(АВСД)/h=2·12/2=12 см.
b=12-a.
a²-(12-a)²=48,
а²-144+24а-а²=48,
24а=192,
а=8.
АД=8 см, ВС=b=12-8=4 см.
В равнобедренной трапеции АМ=(a-b)/2=(8-4)/2=2 см.
В тр-ке АВМ АВ²=АМ²+ВМ²=2²+2²=8,
АВ=СД=√8=2√2 см.
Ответ: 8 см, 2√2 см, 4 см и 2√2 см.
1. ∠С=180-98-44=38°
∠Е=180-98-38=44°
Три угла одного треугольника равны трем углам другого треугольника, значит, ΔАВС подобен ΔDEF.
2. АВ/DE=24/14=12/7 а ВС/EF=60/20=3
т.к. мы не можем получить коэффициент подобия, то и треугольники АВС и DEF не являются подобными