В равнобедренном треугольнике боковые стороны равны
1) 15+15=30 (см) - сумма боковых сторон
2) 48-30=18 (см) - основание
Ответ: 18 см
Можно решить, пользуясь формулой нахождения периметра равнобедренного треугольника Р=а+2b, где а - основание, а b - боковая сторона.
а=Р-2b
а=48-2·15=48-30=18 (см)
Сумма всех углов равна параллелограмма равна 360.
Сумма соседних углов = 180.
Значит 100 градусов - это сумма противолежащих углов.
Противолежащие углы равны.
100/2=50 градусов
180-50=130 градусов
<span>Ответ: 50,130,50,130</span>
Если имеется в виду диагональ основания правильной пирамиды (квадрата), то ее половина равна 12 см. Высота пирамиды (вершина проецируется в точку пересечения диагоналей) найдется по Пифагору:
h=√(26²-12²)=2√133. площадь диагонального сечения равна
S=(1/2)*D*h=(1/2)*24*2√133=24√133 см.
Стороны ромба равны, если провести диагональ, то получится равносторонний треугольник, углы которого равны 60 градусам. Один из углов треугольника является углом ромба. Таких углов два. А диагональ тупого угла делит его пополам, значит угол будет в два раза больше 60 градусов, т.е. 120 градусов. Слово диагональ пишется через "а".