135 градусов или 180-45=135 (Смежные углы образуют развернутый угл = 180 градусам)
Каждый угол прямоугольника делится на 9 частей, значит 1 часть = 10 градусам. Диагонали делят прямоугольник на две пары равных треугольников, причем они равнобедренные. У одной пары углы при основании равны трем частям, т е по 30 градусов, поэтому угол при вершине равен 180-2(30)=180-60=120. У другой пары углы при основании по 6 частей, т е по 60 градусов, поэтому угол при вершине тоже 60. Углы между диагоналями 120 и 60. А в сумме дают 180.
Решение. Т.к. АВС - правильный треугольник, то: а) его медианы совпадают с высотами и биссектрисами и пересекаются в его центре (центре вписанной в него окружности); б) радиус окружности, вписанной в правильный треугольник: r=a/(2*3^(1/2)) (а делённое на 2 корня из 3-х), где а - сторона треугольника.
В прямоугольном трегольнике МОК: ОК = r = 6*3^(1/2) / (2*3^(1/2)) = 3 см,
ОМ=4 см - по условию. Тогда: MK^2 = OK^2 + OM^2 = 3^2 + 4^2 = 9+16 = 25, а MK = 25^(1/2) = 5 см.
В треугольнике МВС, МК - высота. Тогда его площадь равна:
S = 1/2 * (AB * MK) = 1/2 * (6*3^(1/2) * 5) = 15 * 3^(1/2) см2 (15 корней их 3-х см квадратных)
Полная окружность содержит 360°.
Дуга DF, на которую опирается вписанный угол DEF, равна 360°-(дуга DE+дуга FЕ)=142°
<span><em>Вписанный угол равен половине градусной меры дуги, на которую опирается.</em> </span>
<span> Угол DEF=142°:2=71°</span>
Начертим острые углы произвольной величины и обозначим их α и β, соблюдая условие α < β .
Начертим окружность с центром О. От вершин О1 и О2 данных углов как из центра тем же радиусом отметим т. А и В на сторонах угла β, точки С и Т на сторонах угла α. Циркулем измерим дугу АВ и два раза отложим её на первой окружности. Угол СОВ=2β
По общепринятому способу проведем биссектрисы О1k угла β и О2m угла α. Дугу Вk, равную половине угла β, отложим от т.В на первой окружности (прибавим к уже построенному углу СОВ).
Отложим на той же окружности дугу Сm, равную половине угла α, от т.С в пределах угла СОА. Получившийся угол mОk равен требуемому по условию .2,5 β - 0,5 α (на рисунке он окрашен голубым цветом)