Проекция АО бокового ребра SA на основание равна:
АО = √(SA²-H²) = √(5²-3²) = √(25-9) = √16 = 4 см.
Отрезок АО равен (2/3) высоты h основания.
Тогда h = AO*(3/2) = 4*(3/2) = 6 см.
Сторона а основания равна h/cos 30° = 6/(√3/2) = 12/√3 = 4√3 см.
Площадь основания So = a²√3/4 = 48√3/4 = 12√3 см².
Найдём апофему А:
А = √(5²-(а/2)²) = √(25-12) = √13 см.
Площадь Sбок боковой поверхности равна:
Sбок = (1/2)Р*А = (1/2)*(3*4√3)*√13 = 6√39 см².
Площадь S поверхности пирамиды равна:
S = So + Sбок = 12√3 + <span>6√39 = 6</span>√3(2 + √13) <span>см².</span>
(1) Отрезок, соединяющий середины диагоналей, равен половине разности оснований и лежит на средней линии.
(2) Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, равен 2xy/(x+y) - среднему гармоническому длин оснований трапеции и делится этой точкой пополам (формула Буракова).
Итак, из (1) (AD-BC)=40, а BC=(2/3)*AD (дано). Отсюда AD=120, BC=80.
Из (2) КО=(2*80*120/200):2=48.
Высоту трапеции СМ найдем так: проведем из вершины С прямую СN, параллельную стороне АВ трапеции. тогда в треугольнике NCD NC=AB=24(противоположные стороны параллелограмма), CD=32, а ND=AD-BC=40. Найдем площадь треугольника NCD по Герону:
S=√[p(p-a)(p-b)(p-c)]. В нашем случае S=√(48*24*16*8)=√147456=384. Высота треугольника, проведенная к основанию с:
h=2S/с. У нас СМ=2*384/40 = 19,2.
Продолжим боковые стороны трапеции до их пересечения в точке S. По свойству трапеции точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой. Следовательно, искомый отрезок ОТ лежит на прямой SG. Высота треугольника ASD: SF=SE+EF, где EF=СМ - высота трапеции.
AS/BS=AD/BC=3/2 (дано). Тогда BS/AB=ES/EF=2/1 (так как АB=AS-BS) и BS=2*AB=48,
а ES=2*EF=38,4.
ВЕ=√(48²-38,4²)=√(9,6*86,4)=28,8. ET=40-28,8=11,2
ST=√(11,2²+38,4²)=√1600=40. Тогда из подобия треугольников КSO и BSTимеем: BT/KO=ST/SO=40/48 и SO=48.
Тогда ТО=SO-ST=48-40=8.
Ответ: расстояние между точкой пересечения диагоналей трапеции и серединой меньшего основания равно 8.
Еще один вариант решения:
Из (1) и (2) находим AD=120, BС=80, КО=48.
Проведем CN параллельно АВ. В треугольнике NСD стороны равны 24,32 и 40, то есть их отношение равно 3:4:5, а это значит, что треугольник NCD прямоугольный (Пифагоров треугольник) и против большей стороны (гипотенуза) лежит угол, равный 90° Итак, <NCD=90°.
Продолжим боковые стороны трапеции до их пересечения в точке S. По свойству трапеции точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой. Следовательно, искомый отрезок ОТ лежит на прямой SG. Но <ASD=90° (так как AS параллельна NC).
Следовательно, SG - медиана прямоугольного треугольника ASD и равна половине гипотенузы AD, как и SO - медиана прямоугольного треугольника KSH и равна половине гипотенузы KH (свойство медианы прямоугольного треугольника) . Тогда SG=60, ST=2*60/3=40 (из подобия ASD и BSC), SO=KO=48. Значит ТО=SO-ST=48-40=8.
Или так: треугольники ВОС и ОРQ подобны с коэффициентом подобия ВС/PQ=80/20=4/1. ТR=(1/2)*TG=(1/2)*(SG-ST)=(1/2)*(60-40)=10. TR=TO+OR, а TO/OR=4/1.
Значит ТО=(10/5)*4 = 8.
Выбирайте любой вариант.
Решение.
KF - средняя линия треугольника ABD и параллельна BC.
Уг.AFK=Уг.BDA=180-100=80
KF=0,5BD
BD=12
DC=8
BC=20
Из каждой вершины можно провести 5 диагоналей, одна из которых диаметр, остальные 4 попарно равны - две из них из каждой вершины самые короткие, итого 8 штук, если не учитывать повторяющиеся.8/8=1 - это длина этой диагонали, которая соединяет те вершины восьмиугольника, которые находятся через одну друг от друга. Вершин этих 4. Если соединить - квадрат получается.Площадь квадрата со стороной 1 равна: S=a*b=1*1=1Площадь равна 1.
А сторона квадрата равна 8/8=1