Банка имеет форму цилиндра с радиусом основания
R = 5 см и высотой H = 5 см.
Надо найти площадь полной поверхности цилиндра:
Sполн = Sбок + 2Sосн
Sполн = 2πRH + 2πR² = 2πR(R + H) = 2π · 5 · (5 + 5) = 10π · 10 = 100π см²
Пусть дана трапеция ABCD, с высотами BH и CO. BC=HO=6 (BCHO - прямоугольник)
BH=CO. Площадь трапеции равна полусумме оснований умноженную на высоту. Высота неизвестна.
По теореме Пифагора
169=BH^2+AH^2
225=BH^2+OD^2
AH+OD=14
AH=14-OD
Подставим в первое уравнение
169=BH^2+(14-OD)^2
169=BH^2+(196-28OD+OD^2
Из второго уравнения BH^2=225-OD^2, подставляем в первое
169=225-OD^2+196-28OD+OD^2
после приведения
-28OD+252=0
28OD=252
OD=9
Теперь находим высоту
225=BH^2+OD^2
225=BH^2+81
BH^2=144
BH=12
Находим площадь трапеции: S=((BC+AD)/2)*12=13*12=156 см2
Если они расположены в порядке K,L,M,N тогда LM=5
<span> Если они расположены в порядке K,M,N,L тогда LM=11
</span><span> Если они расположены в порядке N,L,K,M тогда LM=13
</span><span> Если они расположены в порядке L,N,K,M тогда LM=21</span>
a= (5+(-2) )=3 b=(1+3)=4 (3;4) координаты суммы