Полупериметр параллелограмма АВ+AD=16, BD=9 периметр треугольника ABD равен 16+9=25 см.
MM1N1N-трапеция
M1K1=K1N1 как отрезки заключенные между параллельными прямыми (по условию K-середина (т. е. MK=KN))
отсюда следует, что KK1-средняя линия трапеции
KK1=(MM1+NN1)/2
9=(16+x)/2
18=16+x
x=2
Готово!
Найдем длину АD=√(40²-24²)=√1600-576=√1024=32
найдем длину ВМ=√26²-24²=√676-576=√100=10
чтобы найти х, вычтем из АD ВМ
х =АD-ВМ=32-10=22см
S(ABM)/S(AMD) = BM/DM , но BM/DM = BC/DA =16/24 =2/3 || ΔCMB ~ ΔAMD || ;
S(ABM)/S(AMD) =2/3 ;
S(ABM)/S(AMD) +1 =2/3+1 ;
S(ABD)/S(AMD) =5/3 ⇔S(AMD) =(3/5)*S(ABD) ⇒
S(AMD)=(3/5)*(24*10/2) =3*24*10/10 =72 (кв.ед.).
* * * ИЛИ по другому Как усложнять себе жизнь * * *
Обозначаем S₁ =S(AMD); S₂ =S(CMB).
S(ABCD) =(√S₁+√S₂)² ;
(16+24)/2 * 10 =(√S₁+√S₂)² ;
200 = (√S₁+√S₂)² .
ΔAMD~ΔCMB ⇒S₂/S₁ =(BC/AD)² ; S₂/S₁ =(16/24)² ⇒√S₂ =(2/3)*√S₁.
-------
следовательно:
200 =((1+2/3)√S₁)² ;
200 =(25/9)* S₁ ;
S₁ =200*9/25 =72 (кв.ед.) .
Обозначим каждую третью часть средней линии за х.
Тогда верхнее основание равно 2х,
Можно найти значение верхнего основания КМ из выражения:
КМ = (12+2х)/2 = 3х.
6 + х = 3х,
2х = 6,
х = 6/2 = 3 см.
Верхнее основание равно 2х = 2*3 = 6 см.
Средняя линия равна 3х = 3*3 = 9 см.
Из заданного условия следу<span>ет</span>, что диагонали наклонены к основаниям под углом 45°.
Поэтому высота трапеции равна сумме половин оснований, то есть средней линии.
Тогда площадь S трапеции равна: S = 9*9 = 81 см².