Высота AD является также и медианой, то AB = AC ⇒ треугольник ABC — равносторонний.
<span>AB=AC=BC = 2•BD = 15,6 см</span>
Ответ:
57.
Объяснение:
сторона ромба равна 76+19=95.
Высота образовала прямоугольный треугольник, у которого гипотенуза равна 95. а один из катетов равен 19. Высота ромба равна другому катету этого треугольника.По теореме Пифагора h²=95²-76².
h²=9025-5776=3249;
h=√3249=57.
Х=(42-32)/2=5см; h=√c²-x²=√13²-5²=√144=12см; S=(a+b)*h/2=(42+32)*12/2=444см²
Воспользуемся свойством касательных к окружности из одной точки, которые, как известно, равны.
Вторая сторона: 24+1=25 см,
Первая сторона: 29=24+х ⇒ х=29-24=5 см,
Третья сторона: 1+х=1+5=6 см.
Площадь по формуле Герона: S=√(p(p-a)(p-b)(p-c)),
p=(a+b+c)/2=(29+25+6)/2=30 cм.
S=√(30(30-29)(30-25)(30-6))=60 см² - это ответ.
<span>Точка
М равноудалена от всех вершин правильного треугольника со стороной a и
удалена от плоскости треугольника на расстояние b. Найдите расстояние от
точки М до сторон треугольника.</span>