1)Составим пропорцию:AM/AB=CM/CD; 18/AM+MB=6/6+MD; ,отсюда следует ,что 18(6+MD)=162; 108+18MD=162; 18MD=54. MD=3
Центр вписанной в трапецию окружности лежит в точке пересечения её биссектрис.
биссектрисы смежных углов трапеции пересекаются под прямым углом,
поэтому треугольник с вершиной в центре окружности и основанием - боковой наклонной стороной трапеции - прямоугольный с прямым углом при вершине, которая является центром окружности.
радиус перпендикулярен касательной => искомая величина h - это длина перпендикуляра опущенного из прямого угла =>
h^2 = ab = 25 * 36
h = 5 * 6 = 30
Ответ: 30.
Про трапецию не правильно ,ср линия равна полусумме оснований
1
Это ответ :)
На самом деле тут нужна теория.
1). Фигура AB1D1A1 - правильная треугольная пирамида с основанием AB1D1. Вершина A1 проектируется на основание в центр O правильного треугольника AB1D1.
С другой стороны, фигура AB1D1C - тоже правильная пирамида с основанием AB1D1 (на самом деле это вообще правильный тетраэдр, у которого все грани и ребра одинаковые). Поэтому вершина C проектируется на основание в центр O правильного треугольника AB1D1.
Это означает, что точки A1 и C лежат на прямой, перпендикулярной плоскости AB1D1, и проходящей через точку O.
Другими словами, ДОКАЗАНО, что плоскость AB1D1 перпендикулярна большой диагонали куба A1C.
Совершенно так же доказывается, что A1C перпендикулярна плоскости BDC1.
Само собой, плоскости AB1D1 и BDC1 параллельны.
2) Теперь надо обозначить O1 - центр треугольника BDC1 (через эту точку проходит диагональ A1C). M - середина BD и AC, M1 - середина B1D1 и A1C1.
Тогда из параллельности плоскостей AB1D1 и BDC1
AO/OO1 = A1M1/M1C1 = 1;
CO1/OO1 = CM/MA = 1;
То есть все три отрезка A1O = OO1 = CO1.
Ясно, что OO1 - искомое расстояние между плоскостями (я напоминаю - A1C перпендикулярна обеим плоскостям).
Вот, теория закончилась. Дальше решение :)
A1C = 3, => OO1 = 1;