X+5+x=50/2
2x+5=25
2x=20
x=10 одна сторона
10+5=15 вторая
Поскольку треугольники АОД и ВОС подобны, то их площади относятся как квадраты сходственных сторон, то есть Sаод/Sвос=ОДквадрат/ОВквадрат=36 корней из2/16 корней из 2=9/4. Отсюда АО/ОС=ОД/ОВ=3/2. Пусть АС=Х, ВД=У. Тогда ОВ=2/5*У, ОС=2/5*Х, АО=3/5*Х. Поскольку диагонали перпендикулярны, то треугольники ВОС и АОВ прямоугольные. Sвос=1/2*(2/5*Х)*(2/5*У)=16 корней из 2. Отсюда Х*У=200корней из2. Sаов=1/2*(3/5*X)*(2/5*У)=3/25*Х*У==3/25*(200 корней из 2)=24 корня из 2.
Ответ:
1. Верно, это признак равенства треугольников по трем сторонам.
2. Верно, свойства углов треугольника
3. Верно, так как если есть упоминание о делении именно основания, то биссектриса лежит именно между равными сторонами, в подобном случае биссектриса будет и медианой и высотой, а медиана делит основание на две равные части.
4. Не верно, сумма односторонних углов при параллельных прямых равна 180°
X^2=16^2+12^2
x=20
x^2+(12^2+y^2)=(16+y)^2
544+y^2=256+y^2+32y
288=32y
y=9
Ответ:
52π (куб. ед.)
Объяснение:
Основания трапеции являются диаметрами оснований конуса. Боковая сторона - образующая конуса.
V=·π·h·(r₁²+r₁·r₂+r₂²) где
h-высота конуса,
r₁=4÷2=2-радиус верхнего основания,
r₂=10÷2=5-радиус нижнего основания.
Найдем высоту конуса, как катет в прямоугольном треугольнике, образованном гипотенузой - боковой стороной и катетом, равным половине разницы диаметров оснований:
h=√(5²-((10-4)/2)²)=√(25-9)=4
Тогда V=·π·4·(4+10+25)=52π (куб. ед.)