Пусть АВ-диаметр, равен 80, СD- хорда равная 64 и EF-хорда равная 48.
1) AEFB, равнобокая трапеция (так как вписана в окружность) ЕН- высота, АН=(80-48):2=16, ВН=80-16=64, из прямоугольного треугольника АЕВ (угол Е=90 градусов, так как опирается на диаметр) ЕН- высота проведенная к гипотенузе, значит: ЕН²=16·64⇒ЕН=32
2) Аналогично найдем высоту СК в трапеции АСDB. АК=(80-64):2=8, КВ=72, СК²=8·72⇒СК=24
3) Искомое расстояние: 32-24=8
Δ АВС - равнобедренный, ВН - высота и биссектриса.
∠АВН=120:2=60°,
∠ВАН=90-60=30°
Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
ВН=1\2 АВ = 9,8:2=4,9 см.
Рассмотрим треугольник ВСЕ - прямоугольный, ∠ВЕС=90°, ∠ВСЕ=30°, ВЕ-?
ВЕ=1\2 СВ=10,2:2=5,1 см (как катет, лежащий против угла 30 °)
5) 225=144+x^{2}
x^{2} =81
х=9
Ответ: МN=9
Периметр это сумма всех сторон.
Р=12+12+а
Р=24+а
Надо построить сечения куба - построено.
Дополнительные линии до пересечения с продолжением ребер.