<em>Допустим, ширина прямоугольника</em><em> х, </em><em>тогда длина</em><em> х + 7;</em>
<em>Формула площади прямоугольника:</em><em> S = a + b;</em>
<em>Подставляем данные и решаем уравнение:</em><em />
<em>х(х + 7) = 60;</em>
<em>х^2 + 7x = 60;</em>
<em>x^2 + 7x - 60 = 0;</em>
<em>Дискриминант полученного квадратного уравнения (формула: b^2 - 4ac):</em>
<em>D = 7^2 - 4 * 1 * (- 60);</em>
<em>D = 289;</em>
<em>Находим х:</em>
<em>x = (-7 - (корень из 289))/2 = (-7 - 17)/2 = - 12;</em>
<em>x = (-7 + (корень из 289))/2 = (-7 + 17)/2 = 5;</em>
<em>Поскольку значение первого х меньше нуля, используем второе значение. </em>
<em>Ширина известна, находим длину:</em><em> 5 + 7 = 12;</em>
<em>Формула периметра:</em><em> Р= 2(a + b);</em>
<em>Подставляем значения:</em><em> Р= 2(5 + 12) = 34.</em>
<u><em>Ответ: 34 см. </em></u>
Ответ:
Как вариант - площадь многоугольника равна сумме площадей многоугольников, из которых он состоит.
Грубо говоря, например, параллелограмм можно разбить диагоналями на треугольники, тогда площадь параллелограмма будет равна сумме площадей этих треугольников, и т.д.
Объяснение:
ABK- равносторонний => угол ABK = 60 => угол KBC = 30 т.к. угол ABC = 90
т.к. ABCD - квадрат. ABK - равносторонний, ABCD - квадрат => AB=BK=BC
=> KBC - равносторонний => угол KCB = (180 - KBC) / 2 = 75
AC - диагональ квадрата => ACB = 45
ACK = KCB - ACB = 75-45 = 30
Пусть АВ и АС - наклонные к плоскости α. АН⊥α.
Пусть х - коэффициент пропорциональности. Тогда АВ=5х, АС=6х.
Т.к. AC>AB, то CH>BH.
В прямоугольном ΔАНВ по теореме Пифагора АН² = АВ²-ВН².
В прямоугольном ΔАНС по теореме Пифагора АН² = АС²-СН².
Значит, АВ²-ВН² = АС²-СН².
Ответ: