Радиус описанной окружности: R= авс/4S.
Радиус вписанной окружности: r=2S/(а+в+с), где а,в,с, - стороны треугольника, S - площадь треугольника. Пусть а=в=15см - боковые стороны, с=18см - основание.
Для нахождения площади треугольника найдем высоту, проведенную к основанию, по т. Пифагора:
h²=а²-(с/2)²=15²-9²=225-81=144, h=√144=12(см)
S =½·с·h=½·18·12=108 (см²)
R=15·15·18/4·108=9, 375(см)
r=2·108/(15+15+18)=208/42=4,5см
------------------------ на 1-м фото вычислительная ошибка. Я его не могу убрать
Попробуй решить по похожей, просто щаменя цифры 3 и 12 на 8 и 18, и все получится. Диагонали ромба АВСД в точке пересечения О делятся пополам и перпендикулярны друг другу. Рассмотрим треугольник АОВ, угол АОВ=90.Из точки О опущен пнрпендикуляр ОМ на сторону ромба. По свойству перпендикуляра, опущенного из вершины прямого угла, его квадрат равен произведению отрезков, на которые основание этого перпендикуляра делит гипотенузу, ОМ^2=AM*MB=3*12=36, OM=6.Из прямоугольного треугольника АМО имеем АО^2=AM^2+OM^2=9+36=45.Но АО- это половина диагонали АС, поэтому АС=2*АО=2* √45=6*√5. Аналогично, из треугольника ВОМ имеем ВО^2=OM^2+MB^2=36+144=180, BO=√180=6√5, BД=2*ВО=12*√5.
Разжевываю
если правильный, тогда все стороны равны, он может быть вписан в окружность, и все центральные углы, опирающиеся на мтороны - равны между собой.
сколько таких центральных углов в окружности? 360/12=30
т.е. и 30 сторон
Р=30*2=60
А)
РК лежит в плоскости ADC,
АВ пересекает плоскость ADC в точке А, не лежащей на прямой РК,
значит РК и АВ скрещивающиеся по признаку.
б)
РК - средняя линия ΔADC, значит РК║АС.
Тогда угол между РК и АВ равен углу между АС и АВ.
∠ВАС = 180° - (45° + 50°) = 180° - 95° = 85° (из ΔАВС)