Касательные и два радиуса, проведенные к точкам касания, образуют четырехугольник. Сумма углов любого выпуклого четырехугольника равна 360°
Радиус, проведенный к касательной в точке касания, образует с ней угол 90°
Так как два угла, образованные радиусами и касательными. прямые, то их сумма равна 180°
Сумма углов FEG+FOG будет 360°-180°= 180°
Поэтому угол <span>FEG равен 180</span>°-<span>∠ FOG
</span>180°-140 °=40
∠ FЕG=40°
Так как накрест лежащие углы при прямых a и b равны (оба угла равны 58), то a||b. Углы образующиеся между прямыми a и c; a и d - односторонние и равны 180 (58+122=180). Значит c||d.
В четырехугольнике сумма всех углов равна 360 градусов. Значит
<span>1) 360-150=210/2=105 если дана сумма противолежащих углов
дальше сама, у параллелограмма противолежащие углы равны</span>
Дано:
тр. ABC
AB=BC
AD - бисс. угла A
угол BAD = углу DAC
AD=AC
Найти:
угол ABC - ?
Решение:
В тр. DAC AD=AC след-но угол ADC = ACD
Пусть угол ACD=x, тогда угол DAC=x/2 (AD бисс)
x/2+x+x=180
x/2+2x=180
5/2x=180
x=72
Значит углы при основании равны 72 градуса.
угол ABC = 180-72-72 = 36 гр.
Ответ:
угол, противолежащий основанию равнобедренного тр. равен 36 градусов
<span> </span>