АБ=корень из квадрат(9,6-(-1,5)+квадрат(7+5)
Треугольники ВОС и АОD подобны по двум углам:
<BCA и <BDA равны по условию, а <BOC=<AOD как вертикальные.
Из подобия треугольников СО/OD=BO/AO или СО/ВО=OD/AO=DC/AB, а
<AOB=<COD как вертикальные.
Значит треугольники АВО и СOD подобны по второму признаку
подобия: "Если две стороны одного треугольника пропорциональны
двум сторонам другого треугольника и углы, образованные этими
сторонами, равны, то такие треугольники подобны."
Из подобия этих треугольников <ABO=<OCD или <ABD=<ACD,
как углы, образованные пропорциональными сторонами, что и требовалось доказать.
AOC=FOD
DOC=AOF
должно быть так
1. a = 2*i - j + 4*k; b = <span>3*i - 3*k; </span>