Ответ:
Объяснение:
Итак, так как треугольник прямоугольный, то мы можем найти неизвестный катет по теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
Чтобы найти неизвестный катет, мы из квадрата гипотенузы вычтем квадрат известного катета.
Получаем:
17^2 - 8^2 = 289 - 64 = 225
Извлекаем корень из 225 и получаем 15.
Периметр - это сумма длин всех сторон треугольника. Сложим катеты:
15 + 17 + 8 = 40 см.
Площадь прямоугольного треугольника находится по формуле:
1/2 * a * b = 1/2 * 15 * 8 = 60 см в квадрате.
Задача решена.
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1}.
Модуль или длина вектора: |a|=√(x²+y²).
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае:
Вектор АВ(2-1;5-(-2)) или AB(1;7) |AB|=√(1²+7))=5√2.
Вектор ВC(-5-2;4-5) или BC(-7;-1) |BC|=√(7²+(-1)²)=5√2.
Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2.
Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2.
Вектор AD(-6-1);-3-(-2)) или AD(-7;-1) |AD|=√((-7)²+(-1)²))=5√2.
Итак, четырехугольник АВСД параллелограмм (так как его противоположные стороны попарно равны. А поскольку все его
стороны равны, то это или ромб, или квадрат.
Найдем один из углов четырехугольника между сторонами АВ и AD (этого достаточно).
cosα=(Xab*Xad1+Yab*Yad)/[√(Xab²+Yab²)*√(Xad²+Yad²)].
Или cosα=(1*(-7)+7*(-1))/[√(1²+7²)*√((-7)²+(-1)²)]=--14/5√2.
Следовательно, этот угол тупой.А так как в квадрате все углы прямые, то вывод: четырехугольник АВСD - ромб что и требовалось доказать.
Если авсд ромб,то значит стороны равны
Ав=СД=ДА=ВС
Они равны по 30 см.
Надо проввести диагональ ВД и это перпендикуляр будет.
Рассмотрим треугольник АВД
Он будет равносторонний,значит ВД равно 30 см
Острый угол равен 60 градусов, значит, тупой равен 180-60=120 градусов. меньшая диагональ ромба является биссектрисой его тупого угла. Угол между стороной и диагональю равен 120/2=60 градусов. В треугольнике, образованном двумя сторонами ромба и меньшей диагональю, два угла равны 60 градусов, значит, этот треугольник равносторонний => меньшая диагональ равна стороне ромба.
В ромбе все стороны равны.
Периметр равен a+a+a+a=24,8 м (а-сторона)
4а=24,8м
а=6,2м
Ответ: 6,2м
1)х=5
2)
3)корень из 243
4)27
на счет 3 не уверен