Дано:
ОМ=РЕ
МР=ОЕ
М(не принадлежит. знак: буква э наоборот,зачеркнутая)ОР
Е ТАК ЖЕ НЕ ПРИНАДЛЕЖИТ ОР.
РЕШЕНИЕ:
Так как ОМ=РЕ, МР=ОЕ, а ОР-общая
то по трём сторонам (3 признак равенства треугольников) эти треугольники равны(МОР=ЕРО)
из равенства следует, что угол МОР=ЕРО И УГОЛ МРО=ЕОР
Треугольники АВC и ADB подобны по двум углам (<BAC=<BCA, как углы при основании равнобедренного треугольника, <ABD и <BAD равны - дано). Из подобия АВ/AD=AC/AB. Или
18/12=АС/18. Отсюда АС=18*18/12=27.
Тогда DC=АС-АD или DC=27-12=15.
Второй вариант решения:
Треугольники АВC и ADB подобны по двум углам, значит <ABC=<ADB.
Пусть <ABC=<ADB=α.
Тогда по теореме косинусов из треугольника АВС:
АС²=АВ²+ВС²-2*АВ*ВС*Cosα. Или АС²=2*18²(1-Cosα).(1)
По теореме косинусов из треугольника АВD:
АВ²=AD²+BD²-2*AD*BD*Cosα. Или 18²=12²+12²-2*12*12*Cosα.
Отсюда Cosα= -1/8.
Подставим это значение в (1):
АС²=2*18²(1+1/8)=729. Или
АС=√729=27.
DC=АС-АD или DC=27-12=15.
Ответ: DC=15.
АВСД-это правильная треугольная пирамида(смотри рисунок). В основании правильный треугольник. Значит точка О является одновременно точкой пересечения медиан, высот и биссектрис треугольника основания. А поскольку боковые рёбра по условию равны, то они имеют одинаковый наклон к основанию и опущенная из вершины пирамиды высота ДО приходит в эту точку О. Проводим апофему ДК. Получим прямоугольный треугольник АКД, поскольку ДАВ=45 по условию, то и АДК=45, отсюда АК=ДК. В точке пересечения медианы делятся в отношении 2/1 считая от вершины. По теореме Пифагора находим Н, потом ребро ДС и cosДАО=корень из2/корень из 3.
КС=х , МК=20 , MD=16 , CD=4
KC - биссектриса
По свойству биссектрисы: КС:МK=CD:MD
x:20=4:16
x=(20*4):16=5