По условию углы при основании трапеции равны(т.к. она равнобедренная), следовательно в получившемся прямоугольном треугольнике, образованным диагональю, большим основанием и боковой стороной острые углы равны 60 гр. и 30 гр. Боковая сторона этого треугольника есть катет, лежащий против угла в 30 гр., следовательно он равен произведению другого катета и tg 30.
Получаем 6*tg 30=6*V3/3=2V3
Следовательно боковые стороны и меньшее основание равны 2V3.
Найдем большее основание. Оно есть гипотенуза
в образованном прямоугольном треугольнике. Боковая сторона есть катет, лежащий против угла в 30 гр., следовательно она меньше гипотенузы в два раза. Т.о. большее основание равно двум боковым сторонам, т.е. 2*2V3=4V3. Далее находим периметр.
Большее основание равно 6
АBK=KAB=40°
рассмотрим тр. КСВ, в нем К=С=(180-40)/2=70
рассмотрим CDB в нем угол С =70 D=90 тогда угол В=20
Проведем высоту BD. В полученном прямоугольном треугольнике ABD
BD является высотой и катетом, лежащим против угла 30°,
AB - гипотенуза.
Значит BD равен половине гипотенузы.
BD= 11,4 : 2 = 5,7(см)
S= (AC*BD)/2 = 17.6 * 5.7 / 2 = 50.16(см²)
площадь ромба равна S=a^2xsin\alpha
Из этой формулы найдем квадрат стороны ромба,поделив на sin150 (0,5).Сторона равна 13.
По формуле P=4a находим периметр.Он равен 52.